
SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Andy Rudoff
Senior Principal Engineer
Intel

Piotr Balcer
Software Engineer
Intel

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

1 How we came to be

Brief Historical Overview

2 What are we doing and why

Directions and goals of PMDK

3 What have we done so far

Current state of the project

4 What are we doing next

A look into the future

2

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Brief historical overview

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Persistent Memory

User
Space

Kernel
Space

Standard

File API

NVDIMM Driver

Application

File System

ApplicationApplication

Standard

Raw Device

Access

Storage File Memory

Load/Store

Management Library

Management UI

Standard

File API

Mgmt.

PM-Aware
File System

MMU

Mappings

• Exposing pmem to applications
• How to name it, re-attach to it
• How to enforce permissions
• How to back it up, manage it
• The short answer:

• Access pmem as files
• Standard file APIs work, memory

mapping gives direct access
• Vendor-neutral

• Published by SNIA NVM Programming TWG

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 5

• June 2012
• Formed the NVM Programming TWG
• Immediate participation from key OSVs, ISVs, IHVs

• January 2013
• Held the first PM Summit (actually called “NVM Summit”)

• July 2013
• Created first GitHub thought experiments (“linux-examples”)

• January 2014
• TWG published rev 1.0 of the NVM Programming Model

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 6

Open a pmem file on a pmem-aware file system
Map it into your address space
Okay, you’ve got a pointer to 3TB of memory, have fun!
• The model is necessary, but not sufficient for an easy to program resource
Gathering requirements yielded fairly obvious top priorities:
• Need a way to track pmem allocations (like malloc/free, but pmem-aware)
• Need a way to make transactional updates
• Need a library of pmem-aware containers: lists, queues, etc.
• Need to make pmem programming not so error-prone

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Direction and goals of
PMDK

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

PMem is multidimensional. It’s both memory and storage.
• As memory, it’s more affordable and bigger than DRAM.

• Enabling previously impossible (or impossibly expensive) use-cases on
multi-terabyte heterogenous memory systems.

• As storage, it’s an order of magnitude faster compared to other solutions.
• Enabling ultra-low latency retrievals and transactions, potentially also

reducing overall memory cost by bypassing the cache.
• As both, it’s unique.
• Enabling new designs that require new unique solutions.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

• Persistent Memory is bigger, but slower than DRAM.
• PMem is only one of the different kinds of memory that can be present in a

heterogeneous memory system.
• Applications typically assume that all memory is the same.

• Hardware or the OS can be made to emulate this status quo (Memory
Mode, Memory Tiering).

• … but, even today, that’s simply not the case.
• NUMA, High-Bandwidth Memory, PMEM and more.

PMDK helps applications with intelligent and scalable memory placement.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

• Persistent Memory is smaller, but faster than traditional storage.
• This is not unprecedented. SSDs were a similar disruption.
• Techniques developed then, make sense now.

• Storage caching & tiering, separating data from write-ahead logs, …
• Thanks to DAX, Persistent Memory can also reduce the reliance on page

cache in applications that use memory-mapped I/O.
• This reduces cost and guarantees stable latency unhindered by page

faults.

PMDK helps developers to modify existing storage solutions.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

• Database storage engine design is essentially a study on how to mask the
large difference between storage and memory.
• We don’t have to do that any more... sort of :)

• Persistent Memory is a new tier that bridges the gap between Memory and
Storage.
• Enables new techniques that reduce access latency and write

amplification.
• Fault tolerant algorithms still need to log data but can now do so using

a single load/store instructions at cacheline granularity.

PMDK helps developers use novel techniques that merge memory and storage.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

“Make easy things easy and hard things possible”
- Larry Wall, about Perl programming language.

• PMDKs goal was, is, and always will be making Persistent Memory programming
easy.

• But also enable solving complex and possibly challenging problems commonly
encountered by users.
• This is done through a multi-layered stack of solutions, with each building

block adding new functionality on top of the previous one.
• Applications can choose their desired level of abstraction.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Current state of the
project

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

volatile use cases persistent use cases

libmemkind

libvmemcache

Space-efficient scalable memory-oriented embeddable

caching solutions.

Memory allocator with specialized per-kind heap allocation

capabilities (PMem, DRAM);

Now with APIs for heterogeneous systems.

libpmem2

libpmemobj

libpmemobj-cpp

libpmemkv

pmemkv-java pmemkv-python pmemkv-js pmemkv-…

Essentials; low-level API that provides an abstraction for all

the necessary primitives an application needs to use PMem.

General purpose transactional object store; Provides memory

allocation and transactions needed for complex logic.

C++ bindings for libpmemobj and PMem-STL; The easiest

and most idiomatic way to write persistent applications.

Persistent Memory key-value store; Easy to get started with.

remote use cases

librpma

Easy to use library for remote memory access over RDMA;

Exposes PMem specific primitives.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 15

Persistent Memory

NVDIMMs

User
Space

Kernel
Space

Standard

File API

NVDIMM Driver

Application

File System

ApplicationApplication

Standard

Raw Device

Access

mmap

Load/Store
Management Library

Management UI

Standard

File API

pmem-Aware
File System

MMU

Mappings

Hardware

CPU DDR

Block

PMDK

pmempool
pmemcheck
pmreorderdaxio

daxctl

Persistence Inspector
VTune Amplifier

Valgrind

VTune Platform Profiler

FIO

MLC

pmembench
PMEMOBJ_LOG_LEVEL

Administration, Benchmark, Debug, Profiling

ipmctl
ndctl

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

A look into the future

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

• Existing PMDK solutions primarily focus on exposing Persistent Memory.
Obviously…

• But PMem doesn’t exist in a vacuum. It’s usually a component in a larger
diverse system and has to co-exist with dedicated memory & storage devices
like DRAM or NVMe SSDs.

• Leaving it up to the application developer to integrate all of that allows for
greater flexibility but makes it hard to create comprehensive solutions.

• We’ve now started to work on solutions that give developers choice with
regards to the level of integration they want, “making easy things easy and
difficult possible.”

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 18

• Existing pmemkv engines primarily use PMem for both metadata and data
storage.

• This has the benefit of ensuring strong consistency but comes at a cost of
higher latency for most operations.

• We are now working on hybrid pmemkv engine that will take advantage of
DRAM to store some of its structures.

• This will give users the choice between higher performance and lower main
memory consumption.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 19

• New versions of memkind now enable developers to allocate memory based
on its properties (latency, capacity, bandwidth) rather than some explicit
name (DRAM, PMEM, HBM).

• But those allocation calls still need to be managed explicitly, introducing
some complexity.

• We are now working on a library for automatic memory tiering at the memory
allocation level. This software will be loadable like any other memory
allocator, transparently managing memory at user-space level.
• Initially, the heuristics to choose between different types of memory will

be simple and based on allocation size.
• But our intention is to research the possibility of leveraging malloc call

stack as well as runtime profiling for better data placement decisions.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 20

Asynchronous Heterogenous
Heap

Tiered Memory & Storage

Familiar and adaptable
interface

Runs everywhere

Ease of Adoption

Zero-cost APIs &
Hybrid Performance

Future-proof

Better on standard hardware
Best on Modern Hardware

(PMem + NVMe + …)

Differentiation

Onesie

• Embedded transactional storage engine
backend
• Written in Rust, with bindings for C

and C++
• Designed for modern

memory and storage technologies…
(PMem, NVMe, CXL, HBM, DSA, RDMA, ZNS)

• … but usable on ordinary hardware with
minimal dependencies.

rt.block_on(onesie.run(|tx| async move {
let root_handle = tx.root::<MyIndex>()?;
let root = tx.read(root_handle).await?;
root.idx.insert(&tx, “Hello”,

“PMem”).await?;
Ok(())

}))?;

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

22

Master Persistent

Memory

Programming

Are you ready to begin?

https://pmem.io/book

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum 23

• “Solving real problems using persistent memory”
• Do you have a real problem that Persistent Memory can help solve?

• Great! Get involved and tell us about it.
• Do you think this is an interesting research opportunity?

• So do we! Get involved and share your ideas with the community.
• Want to just play around with examples?

• You can get started right now. No need for real hardware.

https://pmem.io/

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

