PMDK - State of the Project

Persistent Memory Development Kit

. Andy Rudoff
InteL Senior Principal Engineer

Intel

Piotr Balcer

Software Engineer
Intel

SPDK, PMDK, Intel® Performance Analyzers Vi rtual Fo rum

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Agenda

Brief Historical Overview
How we came to be

Directions and goals of PMDK

What are we doing and why

Current state of the project
What have we done so far

A look into the future
What are we doing next

intel.

2

PDK, PMDK, Intel® Performance Analyzers Vi rtual F

'i

T he Persistent Memory

Programming Model
 Exposing pmem to applications _ (i) (bt (s !J
 How to name it, re-attach to it $ I I
 How to enforce permissions 1 | & |
» How to back it up, manage it | 0 N
* The short answer: . SR
* Access pmem as files I I
« Standard file APIs work, memory perstent ey i

mapping gives direct access
* Vendor-neutral
* Published by SNIA NVM Programming TWG

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Ancient History

* June 2012
* Formed the NVM Programming TWG
* Immediate participation from key OSVs, ISVs, IHVs
* January 2013
* Held the first PM Summit (actually called “NVM Summit”)
* July 2013
* Created first GitHub thought experiments (“linux-examples”)
* January 2014
 TWG published rev 1.0 of the NVM Programming Model

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Building on the SNIA PMem Programming Model

Open a pmem file on a pmem-aware file system

Map it into your address space

Okay, you've got a pointer to 3TB of memory, have fun!

 The model is necessary, but not sufficient for an easy to program resource
Gathering requirements yielded fairly obvious top priorities:

* Need a way to track pmem allocations (like malloc/free, but pmem-aware)
* Need a way to make transactional updates

* Need a library of pmem-aware containers: lists, queues, etc.

* Need to make pmem programming not so error-prone

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

PDK, PMDK, Intel® Performance Analyzers Vi rtual F

'i

Solving real problems using persistent memory

PMem is multidimensional. It's both memory and storage.
* As memory, it's more affordable and bigger than DRAM.

* Enabling previously impossible (or impossibly expensive) use-cases on

multi-terabyte heterogenous memory systems.

* As storage, it's an order of magnitude faster compared to other solutions.

* Enabling ultra-low latency retrievals and transactions, potentially also
reducing overall memory cost by bypassing the cache.
* As both, it's unique.
* Enabling new designs that require new unique solutions.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Persistent Memory as Memory

* Persistent Memory is bigger, but slower than DRAM.
 PMem is only one of the different kinds of memory that can be presentina
heterogeneous memory system.
* Applications typically assume that all memory is the same.
« Hardware or the OS can be made to emulate this status quo (Memory
Mode, Memory Tiering).
* ... but, even today, that's simply not the case.
 NUMA, High-Bandwidth Memory, PMEM and more.

PMDK helps applications with intelligent and scalable memory placement.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Persistent Memory as Storage

* Persistent Memory is smaller, but faster than traditional storage.

* Thisis not unprecedented. SSDs were a similar disruption.

* Techniques developed then, make sense now.

» Storage caching & tiering, separating data from write-ahead logs, ...
* Thanks to DAX, Persistent Memory can also reduce the reliance on page
cache in applications that use memory-mapped I/O.
» This reduces cost and guarantees stable latency unhindered by page
faults.

PMDK helps developers to modify existing storage solutions.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Persistent Memory as both Memory and Storage

* Database storage engine design is essentially a study on how to mask the
large difference between storage and memory.
 We don't have to do that any more... sort of :)
* Persistent Memory is a new tier that bridges the gap between Memory and
Storage.
* Enables new techniques that reduce access latency and write
amplification.
* Fault tolerant algorithms still need to log data but can now do so using
a single load/store instructions at cacheline granularity.

PMDK helps developers use novel techniques that merge memory and storage.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

General Directions and Goals

“Make easy things easy and hard things possible”

- Larry Wall, about Perl programming language.

 PMDKs goal was, is, and always will be making Persistent Memory programming
easy.
* But also enable solving complex and possibly challenging problems commonly

encountered by users.
* This is done through a multi-layered stack of solutions, with each building

block adding new functionality on top of the previous one.
» Applications can choose their desired level of abstraction.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

PDK, PMDK, Intel® Performance Analyzers Vi rtual F

'i

Persistent Memory Development Kit

A diverse stack of solutions

volatile use cases persistent use cases

libpmemkv

Persistent Memory key-value store; Easy to get started with.

libpmemobj-cpp

C++ bindings for libpmemobj and PMem-STL; The easiest
and most idiomatic way to write persistent applications.

libpmemobj

remote use cases General purpose transactional object store; Provides memory
allocation and transactions needed for complex logic.

libpmem2
Easy to use library for remote memory access over RDMA, _ _ _
Exposes PMem specific primitives. Essentials; low-level API that provides an abstraction for all

the necessary primitives an application needs to use PMem.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Thetools ecosystem

Benchmark Debug Profiling

Persistence Inspector

valgrind

p Bk N Persistent Memory
~_ User pmembench

Management Ul PMEMOBJ_LOG_LEVEL

i Standard Standard Standard
Raw Device File API File API PMDK FIO
Management Library AT e

A

. S
pmemcheck

pmem-Aware MMU pmreorder
. Mappings
\ File System

NVDIMM Driver Kernel

Space

VTune Platform Profiler

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

PDK, PMDK, Intel® Performance Analyzers Vi rtual F

'i

Heterogeneity & Ease of Use

« Existing PMDK solutions primarily focus on exposing Persistent Memory.

* But PMem doesn’t exist in a vacuum. It's usually a component in a larger
diverse system and has to co-exist with dedicated memory & storage devices
like DRAM or NVMe SSDs.

* Leaving it up to the application developer to integrate all of that allows for
greater flexibility but makes it hard to create comprehensive solutions.

* We've now started to work on solutions that give developers choice with
regards to the level of integration they want, “making easy things easy and
difficult possible.”

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

’memkyv - Hybrid Engine

» Existing pmemkv engines primarily use PMem for both metadata and data
storage.

* This has the benefit of ensuring strong consistency but comes at a cost of
higher latency for most operations.

* We are now working on hybrid pmemkyv engine that will take advantage of
DRAM to store some of its structures.

* This will give users the choice between higher performance and lower main
memory consumption.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Memkind - Memory Allocation Tiering

* New versions of memkind now enable developers to allocate memory based
on its properties (latency, capacity, bandwidth) rather than some explicit
name (DRAM, PMEM, HBM).

* But those allocation calls still need to be managed explicitly, introducing

some complexity.

 We are now working on a library for automatic memory tiering at the memory
allocation level. This software will be loadable like any other memory
allocator, transparently managing memory at user-space level.
* Initially, the heuristics to choose between different types of memory will
be simple and based on allocation size.
* But our intention is to research the possibility of leveraging malloc call
stack as well as runtime profiling for better data placement decisions.

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Onesie - scalable data solution

Heterogeneous Heap with Log-Structured Asynchronous Transactions

« Embedded transactional storage engine

backend Asynchronous Heterogenous
« Written in Rust, with bindings for C Heap
and C++

_ Tiered Memory & Storage
« Designed for modern

memory and storage technologies...
(PMem, NVMe, CXL, HBM, DSA, RDMA, ZNS)

* ...butusable on ordinary hardware with
minimal dependencies.

rt.block on(onesie.run(|tx| async move { Zero-cost APIs &
let root_handle = tx.root::<MyIndex>()?; Hybrid Performance
let root = tx.read(root_handle).await?;
root.idx.insert(&tx, “Hello”, Future-proof
“PMem”) .await?;
Ok (())
}))?;

Familiar and adaptable
interface
Runs everywhere

Ease of Adoption

Better on standard hardware
Best on Modern Hardware
(PMem + NVMe +...)

Differentiation

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum |nte|;

Master Persistent -
Memory s

B*
LA .

Programming Programming

Persistent
Are you ready to begin? Memory

A‘(omprehensive Guide for Developers
Steve Scar 33

https://pmem.io/book

.......

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum intel.

Callto Action

* “Solving real problems using persistent memory”
* Do you have a real problem that Persistent Memory can help solve?
* Great! Get involved and tell us about it.
* Do you think this is an interesting research opportunity?
* So do we! Get involved and share your ideas with the community.
* Want to just play around with examples?
* You can get started right now. No need for real hardware.

https://pmem.io/

SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

intel

SPDK, PMDK, Intel® Performance Analyzers Vi rtual FO rum

