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T he Persistent Memory

Programming Model
 Exposing pmem to applications _ (i) (bt (s !J
 How to name it, re-attach to it $ I I
 How to enforce permissions 1 | & |
» How to back it up, manage it | 0 N
* The short answer: . SR
* Access pmem as files I I
« Standard file APIs work, memory perstent ey i

mapping gives direct access
* Vendor-neutral
* Published by SNIA NVM Programming TWG
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Ancient History

* June 2012
* Formed the NVM Programming TWG
* Immediate participation from key OSVs, ISVs, IHVs
* January 2013
* Held the first PM Summit (actually called “NVM Summit”)
* July 2013
* Created first GitHub thought experiments (“linux-examples”)
* January 2014
 TWG published rev 1.0 of the NVM Programming Model
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Building on the SNIA PMem Programming Model

Open a pmem file on a pmem-aware file system

Map it into your address space

Okay, you've got a pointer to 3TB of memory, have fun!

 The model is necessary, but not sufficient for an easy to program resource
Gathering requirements yielded fairly obvious top priorities:

* Need a way to track pmem allocations (like malloc/free, but pmem-aware)
* Need a way to make transactional updates

* Need a library of pmem-aware containers: lists, queues, etc.

* Need to make pmem programming not so error-prone
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Solving real problems using persistent memory

PMem is multidimensional. It's both memory and storage.
* As memory, it's more affordable and bigger than DRAM.

* Enabling previously impossible (or impossibly expensive) use-cases on

multi-terabyte heterogenous memory systems.

* As storage, it's an order of magnitude faster compared to other solutions.

* Enabling ultra-low latency retrievals and transactions, potentially also
reducing overall memory cost by bypassing the cache.
* As both, it's unique.
* Enabling new designs that require new unique solutions.
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Persistent Memory as Memory

* Persistent Memory is bigger, but slower than DRAM.
 PMem is only one of the different kinds of memory that can be presentina
heterogeneous memory system.
* Applications typically assume that all memory is the same.
« Hardware or the OS can be made to emulate this status quo (Memory
Mode, Memory Tiering).
* ... but, even today, that's simply not the case.
 NUMA, High-Bandwidth Memory, PMEM and more.

PMDK helps applications with intelligent and scalable memory placement.
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Persistent Memory as Storage

* Persistent Memory is smaller, but faster than traditional storage.

* Thisis not unprecedented. SSDs were a similar disruption.

* Techniques developed then, make sense now.

» Storage caching & tiering, separating data from write-ahead logs, ...
* Thanks to DAX, Persistent Memory can also reduce the reliance on page
cache in applications that use memory-mapped I/O.
» This reduces cost and guarantees stable latency unhindered by page
faults.

PMDK helps developers to modify existing storage solutions.
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Persistent Memory as both Memory and Storage

* Database storage engine design is essentially a study on how to mask the
large difference between storage and memory.
 We don't have to do that any more... sort of :)
* Persistent Memory is a new tier that bridges the gap between Memory and
Storage.
* Enables new techniques that reduce access latency and write
amplification.
* Fault tolerant algorithms still need to log data but can now do so using
a single load/store instructions at cacheline granularity.

PMDK helps developers use novel techniques that merge memory and storage.
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General Directions and Goals

“Make easy things easy and hard things possible”

- Larry Wall, about Perl programming language.

 PMDKs goal was, is, and always will be making Persistent Memory programming
easy.
* But also enable solving complex and possibly challenging problems commonly

encountered by users.
* This is done through a multi-layered stack of solutions, with each building

block adding new functionality on top of the previous one.
» Applications can choose their desired level of abstraction.
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Persistent Memory Development Kit

A diverse stack of solutions

volatile use cases persistent use cases

libpmemkv

Persistent Memory key-value store; Easy to get started with.

libpmemobj-cpp

C++ bindings for libpmemobj and PMem-STL; The easiest
and most idiomatic way to write persistent applications.

libpmemobj

remote use cases General purpose transactional object store; Provides memory
allocation and transactions needed for complex logic.

libpmem2
Easy to use library for remote memory access over RDMA, _ _ _
Exposes PMem specific primitives. Essentials; low-level API that provides an abstraction for all

the necessary primitives an application needs to use PMem.
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Thetools ecosystem

Benchmark Debug Profiling

Persistence Inspector

valgrind

p Bk N Persistent Memory
~_ User pmembench

Management Ul PMEMOBJ_LOG_LEVEL

i Standard Standard Standard
Raw Device File API File API PMDK FIO
Management Library AT e

A

. S
pmemcheck

pmem-Aware MMU pmreorder
. Mappings
\ File System

NVDIMM Driver Kernel

Space

VTune Platform Profiler
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Heterogeneity & Ease of Use

« Existing PMDK solutions primarily focus on exposing Persistent Memory.

* But PMem doesn’t exist in a vacuum. It's usually a component in a larger
diverse system and has to co-exist with dedicated memory & storage devices
like DRAM or NVMe SSDs.

* Leaving it up to the application developer to integrate all of that allows for
greater flexibility but makes it hard to create comprehensive solutions.

* We've now started to work on solutions that give developers choice with
regards to the level of integration they want, “making easy things easy and
difficult possible.”
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’memkyv - Hybrid Engine

» Existing pmemkv engines primarily use PMem for both metadata and data
storage.

* This has the benefit of ensuring strong consistency but comes at a cost of
higher latency for most operations.

* We are now working on hybrid pmemkyv engine that will take advantage of
DRAM to store some of its structures.

* This will give users the choice between higher performance and lower main
memory consumption.
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Memkind - Memory Allocation Tiering

* New versions of memkind now enable developers to allocate memory based
on its properties (latency, capacity, bandwidth) rather than some explicit
name (DRAM, PMEM, HBM).

* But those allocation calls still need to be managed explicitly, introducing

some complexity.

 We are now working on a library for automatic memory tiering at the memory
allocation level. This software will be loadable like any other memory
allocator, transparently managing memory at user-space level.
* Initially, the heuristics to choose between different types of memory will
be simple and based on allocation size.
* But our intention is to research the possibility of leveraging malloc call
stack as well as runtime profiling for better data placement decisions.
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Onesie - scalable data solution

Heterogeneous Heap with Log-Structured Asynchronous Transactions

« Embedded transactional storage engine

backend Asynchronous Heterogenous
«  Written in Rust, with bindings for C Heap
and C++

_ Tiered Memory & Storage
« Designed for modern

memory and storage technologies...
(PMem, NVMe, CXL, HBM, DSA, RDMA, ZNS)

* ...butusable on ordinary hardware with
minimal dependencies.

rt.block on(onesie.run(|tx| async move { Zero-cost APIs &
let root_handle = tx.root::<MyIndex>()?; Hybrid Performance
let root = tx.read(root_handle).await?;
root.idx.insert(&tx, “Hello”, Future-proof
“PMem”) .await?;
Ok (())
}))?;

Familiar and adaptable
interface
Runs everywhere

Ease of Adoption

Better on standard hardware
Best on Modern Hardware
(PMem + NVMe +...)

Differentiation
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Master Persistent -
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Are you ready to begin? Memory

A‘(omprehensive Guide for Developers
Steve Scar 33

https://pmem.io/book
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Callto Action

* “Solving real problems using persistent memory”
* Do you have a real problem that Persistent Memory can help solve?
* Great! Get involved and tell us about it.
* Do you think this is an interesting research opportunity?
* So do we! Get involved and share your ideas with the community.
* Want to just play around with examples?
* You can get started right now. No need for real hardware.

https://pmem.io/
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